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PHASE PLANE ANALYSIS AND OBSERVED FROZEN ORBIT
FOR THE TOPEX/POSEIDON  MISSION*t

Bruce E. Shapiro**

The existence and stability of low eccentricity frozen orbits in a zonal
geopotential perturbed by atmospheric drag, solar radiation pressure (SRP), and
a continuous along-track thrust is studied. General expressions are derived for
the steady state eccentricity and gravity-only phase plane trajectories. These
gravity-only counters are limit cycles that arise from a Hopf bifurcation as non-
gravitational perturbations pass through zero. Drag is stabilizing and thrust may
be either stabilizing or non-stabilizing. A saddlelnode  bifurcation is introduced
by SRP. Variaticms  due to shadowing and solar geometry cause the steady state
to significantly depari from its unperturbed value. This leads to a complicated
phase portrait which can fold back on itself as the bifurcation parameters change
dynamically. While the TOPEX/Poseidon  geometry is such that the saddle/node
bifurcation is not crossed if can be crossed repeatedly in other satellite
configurations. The TOPEX/Poseidon  satellite has remained in a frozen orbit
throughout its three year primary mission and is expected to remain so during the
extended mission without any eccentricity maintenance marmuvers being
required. Orbital data are used to illustrate the abstract models.

INTRODUCTION

Earth observation missions such as TOPEX/Poseidou  are frequcntfy  pfaced in low eccentricity
frozen orbits with the perigee fixed at 90”. In such an orbit, the mean argument of perigee, q and mean
ccccntricity,  e, arc kept in the neighborhood of a stable critical point. Deviations from the critical point
lead to closed curves in the (e,@) phase plane when only central-body gravitational perturbations arc
considered. These trajectories remain in the neighborhood of the critical point even under the influcncc  of
such perturbing forces as drag and solar radiation pressure (SRP). Orbital maneuvers can bc applied to
rccovcr any significant errors which may accumulate. Frozen  orbits exist at all inclinations, even though
they arc frequent.fy thought to exist only for nearly-cirmlar nearly-polar and ne~wly-equatorial  orbits and at
high eccentricity near the critical inclination (e.g. Molniya  orbits), they exist at all inclinations. The low-
ccccntricity  fromn orbit was first described for SEASAT’ but has also bcx.n studied for numerous other
earth-orbiting missions, including the Atmospheric Explorer,23 tie Heat capacity Mapping Mission,2’3
LANDSAT$  GEOSAT?-8  and TOPEX/PoseidonY’O as well as for Martian,l”]2  Venusian,13  and Lunar’4
orbiters. In a more general sense, the expression frozen orbit can also refer to gco-synchronous  and sun-
synchronous orbits.)s

Existence of the frozen orbit is usually attributed to the balancing of the secular perturbations of
the even zonal harmonics with the long period perturbations of the cdd zonal harmonics.16 Early ~
trcatmcnls  obfaincd  an analytic solution through J3 which was then extended to higher dcgrcc zonals via
numerical integration of the mean elements.1-35’9’10 From a more abstract perspective, frozen orbits arise
from bifurcations17’*8 or singularitics12 in the relevant system of differential equations obtained via the
appropriate Hamiltonian  or Lagrangian  formulation. While cam must be taken to ensure that the definition
of mean clcmcnts is compatible with the dynamic formulation, the approach taken is largely a function of
individual authors’ personal biases toward the problem being studied.

Bifurcations arise when constants in the dynamic equations are treated as parameters and allowed to
vary over some physically (or mathematically) realizable range. If the flows of the dynamic system become
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structurally unstable for some values of these parameters -- i.e. the phase portmits  of the original and &-
pcruubcd systems of differential equations are not topologically  equivalent --a bifurcation is said to occur.]9
Besides being interesting from an abstract point of view, bifurcations have pragmatic significance: at
bifurcation points, the nature and stability of the critical points may change. This allows the mission
design cnginccr to identify and classify bread classes of orbits and their sensitivity to various types of
perturbations without the usual black-box approach of tcdiows  numerical integrations. Hopf bifurcations
form a particularly interesting class of bifurcations. This is because of the theorem, first proven by Hopf in
1942, that proves the existence of stable  limit cycles (e.g., closed orbits) in the neighborhood of a Hopf
bifurcation, under ccr@in  conditions. A Hopf bifurcation can be idcntitkl  as follows. Suppose that the
cigcnvalucs  of the Jacobian form a complex conjugate pair A = a fib. A Hopf bifurcat ion occurs  if RC A
passes through O with Im 1 # O as some parameter of the system is varied.

The theory of bifurcations can be used to &jine  a specific mission’s fro).cn orbit in terms of its
cxistcncc and stability properties under quiescent conditions (e.g., low solar  and geomagnetic activity). The
process begins with a two-body Hamiltonian  for the cartldsatcllitc  gravitational interaction. Perturbations
arc * as zonal harmonics describing the Earth’s oblatcncss. As these zonals  arc added, a tapestry of
bifurcations slowly unfolds. Three families of frozen orbits have been identified in this manner: (1) stable
and (2) unstable families arising from Hopf bifurcations at the critical inclination, and (3) a smblc family
starting in the equatorial plane.ls A member of one of these families is then dectexl  as the mission orbit,
Non-gravitational perturbing fomcs such as drag, thrust, or solar radiation pressure arc then ddcd to the
equations of motion. If the subscqucnfJy  perturbed orbit remains frozen and within mission specifications,
all is WCII, If not, further examination of the stability of the perturbed orbit can bc performed to determine
the cxlcnt of maneuvering which will be ncccssary to maintain some approximation of a frozen orbiL. There
is the added complication that the usual perturbations of interest are non-conservative functions of cxtrcmcly
dynamic variables (e.g. solar flux, atmospheric density, satellite attitude) and the resulting systcm of
equations twcomcs non-autonomous.

In the present analysis the Lagrangian formulation is utilized and phase  space is rcduccd to two
dimensions by assuming that the inclination and semi-major axis arc constant. While this simplification is
appealing since it permits the application of such results as the Har(man-Grobtnan theorem (lhat  the flows
of the nonlinear systcm,  in two dimensions, are homomorphic to the linear systcm  in some neighborhood
of the steady state), it is also physically rcasomble  if a and i can be kept fixed via orbitat maneuvers”
indcpcndcntty  of e and o.). A gcncrat solution for the fmzcn eccentricity is then clcrivcd. The stability of
this solution is examined in the phase plane under the influence of various perturbing forces. It is shown
that the frozen orbit arises out of a Hopf bifurcation when non-gravitational forces disappear; limit cycles
appear in the neighborhood of the steady state when the perturbations arc small. Dfiig  is stabilizing, while
thrust can bc either stabilizing or destabilizing. Solar radiation pressure has a complicated parameter space
describing the orbital/solar geometry which is continually changing. This causes the steady stmc to depart
significantly from the unperturbed state, thereby dragging the phaw plane trajectories with it. For some
satellite/orbital configurations, the steady state can cross additional saddle-ncde bifurcations as the sun
moves through its ~’cycle. This allows the (e,ro)  trajectory to double back upon itself and curlicue through
the phase plane, a situation which would not be possible in the case of fixed perturbations.

Numerical examples and observations of the TC)PEX/Poseidon satellite frozen orbit taken during
its primary thrco-year mission arc provided. This joint US/French mission*” studies global  OCW
circulation and its interaction with the afrnosphcrc  to better understand the Earth’s climate. This goal is
accomplished utilizing a combination of satellite altimetry data and orbit determination to precisely
dctcnnine ocean surface topography. The satellite is maintained in a nearly circular, frozen orbit (e = 95
PPM+ and ro = 90°) at an altitude of ==1336 km and an inclination of i u 66.04”. This orbit provides an

—

“ In fact, in the absence of dra and solar radiition pressure, there are no bng term or secdqr  @rturbation’on  a, while the long-
c?term variation in inclination ue to centre-body gravity is smaller by a factor of e than the variation of e itself.

● “ The TOPEWPoseicfon  Mission is jointfy funded b the US National Aeronautic and Space Administration (NASA) and the
zFrench Centw  Natiorra/  &Etudes  Spatia/es  (CN S).

+ Parts Fwr million. The ,cfifferenca  between the value ~oted hem and the value dariied in the folbwing  section is due to the
solecbon of the operebonal  orbit based upon early numerical calculations which truncated the zonal expansion atJ17.
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exact repeat ground track every 127 revolutions (=9.9 days) and overflies two altimeter verification sites.
TOPEX/Poseidon was launched by an Ariane 42P on August 10, 1992. The operational orbit was =quircd
some 42 days later, on Scptcmbcr  21, 1992, following a sequence of six maneuvers.m

STEADY STATE SOLUTIONS

The relevant systcm  of differential equations can be obtained from Mcrson’s21 implcmcntrttion  of
GrOVCS’22 formulation (see equations A20 and A32 in the appendix). Omitting the explicit dcpcndcncc upon
semi-major axis and inclination,

do.)
— = B(u, i) + [(1 /e) G(u,i) – eD(a,i)]sinrn (1)
dt

$ = –G(a, i)cosro (2)

where B, D, and G arc given by equations A29, A35, and A31. From equation 2 steady state solutions
(corresponding to.4 = h = O) are possible at either the orbital “north pole” (co= 90”) or the orbital “south
pole” ( rir = 270” ). It will bc seen that only onc of these solutions is possible for any given combination r
inclination and semi-major axis. Furthermore, although equatiori  1 produces a qaadrdtic for the steady stNc
ccccnlricity,  there will be a unique physically realizable  solutiow  At the orbital north pole,

–De2+Be+G=0 (3)
and hcncc

–B k ~B2 + 4DG
(4)

1000e=
–2D –

~
Only onc of these solutions will produce a ‘1 100
physically realizable solution (e20), which must .~
also satisfy the initial assumption that ec<l. ‘~
Thus there is a steady state at the north pole  only ~ 10
when B and G have different signs. This w
corresponds to the positive root in equation 4 1

—

t7-’- ‘
— —...— . ..— ————-. -— ——— —-—

when “B>O and the negative root when B<O. At “
the south PO]C,

3 5  7  9 1 1 1 3 1 5 1 7 1 9 2 1 2 3 2 5 2 7 2 9

–De2– Be+G=0 (5)
Number of Tcrrm in Zonal  Field

Figure 1. Eccentrlcl~  of frozen orbit predicted by equation

F“
7 for TOPEX/Poseidon as a function of the number of

+B~ B +4L)G
e= (6)

terms  in the zonai potential. Dots: north pole; Square:

-2D – south pole solution.

The south pole solutions cxis[ when both B and G have the same sign, corresponding to the positive root
in equation 6 when they are both negative, and the negative root when they arc both positive. At this point
equations 4 or 6 could ,thcmselves  be studied for bifurcations in terms of the pararnctcrs B, D, and G;
however, these arc already fixed froti~e problem at hand (the TOPEX/Poseidon  orbit,” B=-9. 105x1 O”’ SCC”l,
G=9.094x10-12  SCC”l,  and D=4.874x10”10 sexrl) and this problem is left for further study. Since DG << B2

at inclinations sufficiently far away from the critical inclination (where B=O) equations 4 or 6 can be
expanded as a series in the small parameter DG/B2 to give

(7)

A similar result has been given by Rosborough and 0campo.12 Since equation 7 was dcnvcd  by assuming
the ec< 1, it is not valid if it gives an ceccntricity  approaching 1 (or larger). It is of vital importance to

● Ali values quoted in this paper for TOPEX/Poseidon are based upon a truncation of the GEf4T3  gravity field at J29.
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inclrrdc  a sufficient number of terms in the expansion; this is illustrated in figure 1 for the
TOPEX/Poseidon orbit. If the calculation had stopped with J9, the predicted eccentricity would bc nearly
two orders of magnitude too small, while if it had stopped at J 11, the frozen orbit would have been predicted
in the wrong hcmisphcrc!  It appears from figrrm 1 that a mininmm  of 13 terms arc required for this
satellite.

Equation 7 has a singularity at the “criticat  inclination” which occurs when COS
2 i = 1 / 5,

corresponding to an inclination of approximately iCriliCO@3.435”. Ncas’ this  inclin:ltion,  tic aPProxin~ation
that DG<@2 is invalid, since B=O, It is possible to get higher eccentricity frcwcn orbits near this
inclination. At a slightly larger inclination, G also IMsses  through zero. In the range of inclinations
between the two zeroes, frozen orbit solutions exist at the south pole. The critical inclination has been
smdicd cxtcnsivcly  clsewhcrc.n For TOPEX~oseidon e~, = 99.88 PPM. Furthermore, there is a second
singularity in the derivation when D=O, at an inclination of =32.4”, which also demands further analysis.

PHASE PORTRAIT OF THE FROZEN ORBIT

The systcm of differential equations 1 and 2 can be directly integrated to give trajectories in phase
space. This is fortunate, since the systcm is non-hyperbolic (has purely imaginary eigcnvalucs)  and the
Hartman-Grobman  theorem (the flows of the nonlinear system arc homomorphic to the linear systcm in
some ncigbborhood  of the steady state) does not apply. Unless onc can find a Lyapunov function, there is
no easy analytic method to dctcrminc stability, hence the usual introduction of numerical integration, Later,
when non-gravitational perturbations arc introduced, the resulting structural instability of the systcm  will
perturb the circular ccntcrs seen here into either spiral centers (stable or unstable) or saddle nodes.

Consider the pair (e,ru) as the polar coordinates of a vector whose Cartesian rcprcscntation  is
x= ecos~ (8)

y=esinal (9)

Then

Taking
(y=isin@ +eticosrv  =~Z+xti =~(-Gcos@)+x B-t

the ratio of the last two equations gives
dy –Bx—=—
dx G+By

integrating and completing the squares in y,

X2 + (y–e~~)2 = C2

(12)

(13)

where e~~ = –G / B and C is a constant determined by fhc
initial conditions. Equation 13 descrks  a family of circles
centered at (O, e~~). Figure 2 illustrates one typical such
family, based on the J3 truncations of B and G for
TOPEX/Poseidon. The only difference between the family
shown in figure 2 and the complete family is the location of

e )

)~sinm =Bx (11)
e

the ccntcr.  North pole frozen orbits will have eentcrs  in the T 7’
ems o. PPM

top half plane, while south pole frozen orbits will have centers
in the bottom half plane. Transforming back to orbital Fl ure 2. Frozen orbit tra ectories  described

iy~uation5forTOPE~Poseldon  toJ3.
coordinates,

( )

G(a,i) 2  = ~2
e2cos2ru+ esinrO+—— (14)

B(a,i)

4
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The phase portrait prcdiclcd  by equation 14, following the first TOPEX/Poseidon orbit maintcn,ancc
mmrcuvcr, is illustrated in figure 2. The contours dmeribcd  by both equations 13 and 14 arc closed. The
steady state is thus a “ccntcr point” of trajectories with periodic variations in eccentricity and argument of
perigee. This periodicity  arises from a Hopf bifurcation which occurs when Lhc magnitude of non-
gravitational disturbing forces (e.g. drag) goes to zero.

([G’33
55 60 65 70 75 80 B5 90 95 100105 110115 120125

Argument of Perigee, Degrees

Figure 3. Frozen orbit predicted for TOPEX/Poseidon  after the first orbit maintenance maneuver.
The tick msrks  sre in days. Non-gravitational forces and subsequent mansuvera  are not Included.

Calculation of the cigenvalucs  provides explicit formulas for the period of oscillation of the
linearized systcm.  The Jacobian matrix of equations 1 and 2, evaluated at the north polar steady state is

where the approximation B2/G>>D (only vafid outside of a neighborhood of the critical inclination, .scc
equation A36 in the appendix) and the result G=A (see the discussion following equation A31) have been
used. The cigcnvalucs  arc the roots of the characteristic equation

0=dct(.XU)=A2+B2 (15)

Thus the period of oscillation is

T.@=2z ~=ven ~
IBl “w’p’(oi%yp’(cosi)+cosip’(cosi)l ‘“] (17)

giving a period of approximately 26 months for TOPEXPoseidon.

NON-GRAVITATIONAL FORCES
Atmospheric Drag

Incorpomting  the effects of a drag perturbation into equations 1 and 2 gives to lowest order in the
eccentricity (SCC equations A50 and A55 in the appendix)

Kp5
~= B+~sinco-— (18)

e e

~= –Acosa – pIK– p2Ke (19)

The perturbed steady states are
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cosa= –~(pl +ejz) (20)

Kp5
e=e~~sin@–e~~—

G
(21)

Defining Ao.Roz/2+A  and &=e-e$$  and assuming that the perturbations are small,

sin~ = sin(z/2+ Ace)= COSAO= 1 –(Ao)2/2+-  . . . (22)

cosm=cos(z /2+ Am):=  –sin Am =-Am+-... (23)

then
& = -es, Kp5/B (24)

A(o = ~(pl + p2e) (25)

Since &/e.$ = –Kp5/B <<1 the approximation e =e$, can be used if] the right hand side of equation 25. For

TOPEX/Poseidon, B=-9.105x1O”’*  see-l, G=9.094x10-12 See-l, K = 9.86x 10-8km3 /kg – scc, and
p = 4 x 10-7 kg/km 3 (orbital avtx-age, low flux, Jacchia-Rotxxts  at mosphcric  modclm).  H e n c e
\Kp,[  <4 X 1 0-’4 ‘* T?rc Jacobian of the perturbed system is thenSec .

(26)

and the characteristic equation of the linearized system is

A2 + (GA@/e~~ + p2K)A + (G/e~~)(p2KAro  + G/e~S) == O (27)

The cigcnvalucs arc

{

—- —- —.. —
A= ~ -(Kp2  + GAw/e.$) t ~Kp2 + GA@/e~$)2  - 4(G/c~$)(pzKA@  +- G/e.,)‘--”-1 (28)

Since the function defined by equation 28 is continuous and

;:oa=@ZZ=*~ (29)

the conditions for a Hopf bifurcation are met. Hence one expects oscillatory behavior to occur in the (e,ro)
plane. The condition for stability is that the real part of the eigenvalue  be negative, i.e.,

Kp2 + GAm/e~~ >0 (30)

Substituting equation 25 gives

P2(1 + e/e~~)  > -pI (31)

These oscillations will produce stable spirals when this condition is met. For the typical satellite orbits
arc considering the dcnsity”  peaks at =14hOOm  local time, and can be pheonmcnologically  rcprcscnted  by

p(E) = p + ap COS(E - En,ax) (32)

w

where ~ and fip are positive constants and Emax is the eccentric anomaly at maximum density. Then
since pl = (6p/2) cos Emax and p2 == ~,

6



Since I + e /e~~ =2, values of @ m large as = 4j5 will usually  IX sufficient to guarantee that ~uation 30
is satisfied and the perturbed phase plane trajectories are stable. For TOPEX/l%scidon  at low flux values,
~=4x10-7kgjkm3, @ = 2 x 10-7kg / km3 (using a Jacchia-Robert.$~ model) and hcncc the stronger
condition is easily met. Thus drag should have a stabilizing influence.

Constant Density Atmosphere
When the density p is fixed over the entire orbit, equations 18 and 19 bccomc

G
~= B+ —sin@ (34)

e

$=–Gcosro-~pKe (35)

and the ncw steady state is

~ = tan-l (2 G/Kpe~~) (36)

l=e,.1~x~e,,12B)2
——

(37)

For TOPEX/Poseidon, G = 9.094 x 10 -12 see-l, A = 15m2, and KS= 9.86x 10-8km3 /kg – scc, hcncc

A@=  900–h = 1 25”x10-5. A shift in pcngce by as much as one degree would require a density of 33
gm/km3, corresponding to the maximum Harris-Priester densityx at 300 km. Thus drag does not
significant y affect the frozen orbit for TOPEX/Poseidon. The Jacobian at the new steady state (Z, h) is

and hcncc the cigcnvalucs  foml a complex conjugate pair

(38)

(39)

Since the real parts of the eigcnvalues  arc negative, the trajcdorics  form stable spirals. Hcncc the cffccl of
drag in a constant density atmosphere on the froix.m orbit is stabilizing.

Continuous Along-Track Thrust
Shortly after the TOPEX/Poseidon  launch, analysis of orbital data rcvcalcd the prcscncc  of hitherto

uncxpcctcd accelerations causing a decay in the semi-major axis as much, as 60 times larger than could be
explained by atmospheric drag, These accelerations steadily declined over the next six weeks to a residual
lCVC1 which was approximately seven to ten times larger than drag in magnitude, varied with yaw mode, and
allcmatcxl  Mwccn orbikll decay and boost.~ The original accelerations have since been attributed to
outgassing, while the residual accelerations have been attributed to non-symmetrical radiation exposure of
the solar  array over a single orbit and thermal radiation bchg emitted by the satellite.270M These
accelerations display characteristics of continuous low-level along-track thrust forces on the order of several
rnicro-newtons.

Applying a continuous along-track thrust to equations 1 and 2 gives (see equations A57 and A58)
~= B+ Gsin@ (40)
dt ;

2T
~=–Gcosro  —-e (41)

mv



,.

These arc completely analogous to equations 34 and 35 for a constant-density drag, with pK / 2 rcplaccd by
2T / mv. This is not too surprising{; since drag acts along the direction of motion. Consequently,

~ = tan-l (nrV~/2TeSS) (42)

~=es$j~x.vB)2
— .

(43)

For typical TOPEX/Poseidon parameters and a force of 2. I.LN, A@= 0.14”. A chitngc of perigee by onc
dcgrcc would require a thrusl of 14 ~N. Onc significant diffcmnce  bxwcxn a continuous thrust and a
Consklnt  drag is that the thrust can be applied in either direction, while the density is non-negative. Thus a
continuous thrust can bc either stabilizing or destabilizing. Furthermore, while the concept of a Hopf
bifurcation was just a useful mathematical fiction realizable  only in the limit of zero drag, thrust provides a
physically realizable Hopf bifurcation.

Solar Radiation Pressure
Solar radiation pressure (SRP) changes equations 1 and 2 to (see equations A63 and A70)

~=–Gcosm+lI (45)

where 11 and W arc functions of the solar direction vector with respect to the orbit plane. The steady state at
each pole bifurcates into a pair of states (Z*, d) such that

& = cos-l(ll /G)

These steady states  may not be physically realbable,  however.
immediately gives

111/GIsl

If this  condition is not met then no steady state solutions exist.
positive. For Z+ to exist, this is equivalent to

W<~~, B>O

~, B<OW> G –11

(46)

(47)

For the eccentricity to be real-valued

(48)

Furthcrrnore,  the eccentricity must be

(49)

(50)

For ;_ to exist, the equivalent conditions to equations 49 and 50 arc

W<–~~, B>O (51)

~, B < OW>– G –11 (52)

The Jacobian at the steady states is

(53)

which has eigcnvalucs  at

‘=& ’+w-+Bw”*l
(54)

There is a Hopf bifurcation when 11 and W pass through 7,ero simultaneously, or when H passes through
zero while B2 + BW/F+ >0. If

B2+BW/Zh<0 (55)

8
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the critical points will be saddle nodes, If the argument of the square root is negative and 11<0, the steady
state will bc a stable spiral centen  if H >0, and unstable spiral center. As the argument of the square root
in equation 54 passes through zero wilh H#O, a saddle-node biful cation occurs. The condition for ccntcrs is

~ ~ G2 – 1.25112

- ‘  ‘=’+
(56)

~ > 1.25F2 – 112

- ‘  ‘= 2 -

(57)

These results arc summarized in figure 4. While the value of B is essentially fixed for any satcllilc
(assuming semi-major axis and inclination do not change), W and H are dynamic functions of the solar
geometry. As the geometry chrmgcs,  the value of (H, W) moves through the 11/W plane. Whenever the
point (II,W)  crosses regional boundaries, the nature of the steady state changes. So long m (II, W) remains
in the shaded areas, the critical point (the steady state of eqns. 44 and 45 in (e,@) space) @9a spiral centen  if
(//, W) crosses into the lined area, the steady state becomes a saddle node. The spiral center is stable when
(11, W) is on the left half plane, and unstable when (//, W) is on the right half plane. If (II,W) passes into
the unshaded area, the smady state disappcarx  entirely. There is potentially a very complicated dynamic,
with the stead y state altcmatel y stable, unstable, bifurcating, or disappearing entircl  y.

‘$:;g:#:*”,
-IGI ,:,,,: IGl >

m Center ~ Saddle Point
Figure 4. Bifurcation parameter spaea for SRP, with W and }1, defined by equatlona  A63 and A70,

treated aa parameters. (a) and (b): parameter spaoe for e+; (c) and (d): parameter space for e..

w
o

IGI

-IGI
-IGI

I! ICI -IGI IGII!
Figure 5. Parameter apace evolution corresponding to ffgure 4d for the TOPEX/Poseidon primary
mission. (a) Actual orbit. (b) Hypothetical satellite with one half the maaa of TOPEWPoseidon.

-.12 sK– 1 hence the possibleFor  TOPEX/Pose idon ,  B = –9.105  X 10–8 SC$-l and G = 9.094 X 10. s
situations are those illustrated in figure 6b for ?+ and figure 6d for Z_. The effect of solar radiation pressure
on the steady state is illustrated by figures 5 and 6. Figure 5a shows the variation in the }IIW plane.
Since the location of (1{, W) is always within the circle of radius ICI, the steady state at t?+ does not exist.
Figure 6a shows the variation of the steady state at tZ resulting from this motion in the H/W plane; it
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altcmatcs  bctwccn  stable and unstable spirals ‘with a period of approximately 56 days. The prcdictcd
variation of the actual orbitat  paramctcm  for the three year primary mission, ignoring maneuvers, is shown
in figure 6b. The mcm clement propagations illustrated in figures 6 and 7 were performed using GTARG”
which has been dcscribcd  clscwhcrc.n  GTARG has bcxm updated to account for the perturbations on the
frozen orbit dcscribcd  in the appendix. From equations A63 and A-JO in the appendix, the variation in the
H/W plane is inversely proportional to the satellite mass. Halving the mass would double the rate of
variation; the evolution of such a hypothetical systcm  in the n/W pammetcr  plane is shown in figure 5b,
and in the (e,@) phase plane in figure  7. In this w the system passes through all three regions of the
parameter plane, stable/unstable spiral, saddle, and total non-existence of a stationary point.

I I2(I I
45” 6tY 73” h lbs” KAr 133” is 6iY 75” ;ti 165” 12CY 13.

Steady State Argumenl of Paigee Argummt of Prxigec

Figure 6. Effect of solar radiation pressure on TOPEX/Poeetdon  frozen orbit  over three year
primary mission. (a) Variation of steady state. (b) Predicted evolution of frozen orbit Ignoring

maneuvers. I%e unperturbed wrve  andosea the shaded area.
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— ——.-———— —

,,, .,.,.. . . . . . . . . . .,,,’ “’:”:? *-—-.‘:’: :’.},:: ,,. : ., :’: ., ’,’ ., ,’ Gravity onlyJ -’” “

~

30” 60” 90” 120” 150” 180” 210” 240”
Argument of Pengce

Figure 7. Predicted evolutlon  In (e, ro) phase plane for the hypothetical sa!elllte of figure 5b.

OBSERVATIONS
Operational orbit detcm~ination  for TOPEX/Poseidon is provided by the Goddard Space Flight

Center Flight Dynamics Division (GSFC/FDD) using GTDSX to process observations obtained via the
TDRSS. 29 Mean clcmcnts arc calculated by removing all central body zonal, sectorial,  and tcsscral
harmonics, second-order J2, and third-body (luni-solar)  perturbations acting over a specified time interval, as
dcscrikxi  by Guinn.m An analysis of variations in the observed orbit, particularly a and i, has been
prcscntcd previously.31 In summary, the frozen orbit was maintained throughout the TOPEX/Poseidon

—— ——

“ GTARG is available from COSMIC.* A description is available on the Worid W& Web at URL http~hwv.cosmic.uga,  edu.
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prime mission without requiring any dcdicatcd
maneuvers. Although eight orbit maintenance
maneuvers (OMM) were performed during this
period to recover scrni-major  axis decay due to
dmg and maintain the exact repeat ground track,
every effort was made to not increase e when
performing an OMM. The predicted evolution
of the frozen orbit after each maneuver is
illustrated in figure 8. The corresponding
ob.served mean elements derived from the
GSFC/FDD TDRSS observations are
summ,arizcd  in figures 9 through 11. Figure 9
shows the observations in the xly phase plane
dcscribcd  earlier, with post-maneuver predictions,
including all of the pcvturbations  described in the

160
150
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z 130
& 120

- 110
.@ ]00
g ~

!

80

P 70
60
50
40.
30

45”6W ” ” ” 120”
~ument?f l’eri~~~

135”

Figure 8. Frozen orbit following each maneuver as
predicted b GTARG. orbit maintenance maneuvers

(OhM)  are annotated sequentially.

appendix as predicted by GTARG. The unperturbed (gravity-only) solution is also  shown. While it is not
possible to see trends from figure 9 duc to the density of data points, it dots clearly demonstrate that the
frozen orbit has remained relatively close to the gravity-only solution (the circle in figure 9). The actual

160-

140

120

100
3
c.+co
0 80

60

40

20

4

-4-

-i

f!]
‘1=

I I 1 I I I I
1 1 I

-80 -60 +0 -20 0 20 40 60 80
e cos 03

Figure 9. Observed and predicted frozen orbit for TOPEX/Posefdon. The boid curve is identieal to
the boid curve of fi ure 8, but Is plotted in the (em

r
~esino$ coordin  ta e plane rather than the (e,@

plane. The symbos sttow  observed vaiues of the o Ital demerits. The shaded areas of figure 8
and figure 9 correspond to the came area of phesa space and are bordered by the gravity-only
solution given by equations 13 and 14. The shading te not significant, but Is added for clarlty.

evolution of the frcmcn orbit as a function of time is illustmted  in figure 10. Figure 10a shows the
observed and prcdictcd  eccentricity as a function of time. The mean eccentricity derived from FDD
observations is shown by the light-weight curve, the gravity-only prediction at the start of the prime
mission is indicated by the medium-weight curve, and the post-maneuver predictions including all

11
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pcrmrbations  modeled in the appendix by the heavy-weight curve. The effect of solar radiation pressure is
clear from the figure.
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40
Scp-92 Dcc-92 Mar-93 Jun-93 Sep-93  Dee-93 Mar-94 Jun-94 Sep-94  Dee-94 Mar-95 Jun-95  Scp-95

Figure 10. Observed and modeled TOPEX/Posekfon  frozen orbit. Ttek marks correspond to the 15th of the month.
Maneuvers are Indicated by vertfcal  grid lines.

S U M M A R Y
‘IIIc low ecccntricit  y frozen orbit arises from a Hopf bifurcation when perturbing forces, such as

atmospheric drag, solar radiation pressure, or along-track thrust, pass through zero. Drag has a stabilizing
effect, while thrust  can bc either  stabilizing or nonstabilizing. Solar radiation pressure is the most
significant non-gravitational perturbation for TOPEX/Poseidon. It can cause the fro~cn orbit to rcpcatcdly
pass through both the Hopf bifurcation and a second saddle/node bifurcation, causing the steady state to

~ltcrnatly~c  a strrblc  spiral center, an unstable spiral center, and a saddte point. The result is a complicated
phase trajectory which repeatedly loops back upon itself. For TOPEX/Poseidon the saddlcAmde  bifurcation
is never crossed and consequently the observed trajectory is never very far from the perturbation-free frozen
orbit (drag and solar radiation pressure equal to zero), even when the effect of maneuvers for semi-major axis
maintenance arc taken into account. The effkcts of luni-solar  gravity, non-spherical solar reflection, and
differential black-body radiation have not been considered and may account for some of the difference
between the predicted and observed phase portraits. Nevertheless, the TOPEX/Poseidon satellite continues
in a frozen orbit at the cnd of its primary tlmx-year  mission, although not a single eccentricity-maintenance
maneuver was required. During this same pericd a total of eight drag make-up maneuvers were performed.
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APPENDIX - PERTURBING FORCES

Zonal Gravity Fieid

The general zonal perturbations on the mean eccentricity y and argument of perigee arc givcn21 ’22 in
terms of the Lcgcndrc  Polynomials*’32  as

(Al)

Where

(=(, -e7-’/2 (A3)

Uk  =z-~ko (A4)

‘fk(i)=uk ~l+k), z~Tk (.0s i)T} (0) (AS)

I (t-k)! ~
—----Tl (0)[k cot i T; (COS  i)-Tl‘}ko (i)=~uk ~t+kl, ‘+1 (cm i)] (A6)

Equations A 1 and A2 are considerably simplified in the low e approximation. From A3, when e<< 1

(@)k/2s(-l)Vz.k (A7)

Hcncc
el(l-1)

( )
(A8)P}_1(<)=(-l)k12  (l-<2)k'2PJ~\(~)  =ekPJ~\(l)=~ko+  -:-6kl+0 e2

where the fact that P4 (1)= 1 and Q’(l)= l?(t + 1)/2 have been used.32 Combining the last two results

( )
(k+ 1)/2 #;l)(*)=e ‘+l~~~])(l)=:$e~kot(~-l) (A9)p}:;  (f)=(-l)@+l)/2  1-p

Substituting equations AS and A9 into equation Al gives, to lowest order  in e,

; -i~f(+~ i~’[’b-:)](::i?,)!’—.
!=2 k=O

{[( I
~1]+6kO~]Zk [ 1}~(f-’)  V“ (i)–z cot i I;jo(i)  6ko +bkl -- ~--/+} 6~o+6k] et(l–1)

e

The Krcwnckcr delta collapses the summation over k to only two terms:

+= ‘idt(+)f{-[[~+~]vfo(i)--2wtW/oo]
!=2 —-—-——-————

k=O

+ (/-1)!

[()
~ COS(oP7T/2)  f+~ ‘t(f-l)v~(O-2  CO~ i ~tIO f~(~-1)~2 2 1}——. --——.

k=l

(A1O)

(All)

“ The associated Legendre Polynomials are defined  ss P}(x)= (-l)k’2T~ (x) * 1}(x)= ~ - x ) Pt (x). me ‘om%ct2 ‘/2  (k)

notation P~)(() = @k/dx~)Pz(~~X={sd Pj(<) = (~z (X)/& )lX={’s ‘d
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. .

(A20)

and hence

~=-~~t ~ ‘  e(e+l) ~
( ){

~—VIO –2 cot i Ejo [
+ !flv” –e(/-l) cot i E]lo

F’S(6)} (A12)

!=2  a
> !1

The explicit dcpcndcncc on inclination has box omitted from equation A12. To further and focus on the
sensitivity to variations of e and ri~, dcflnc the auxiliary functions

( )

!
j~(a)=ml~ ~ (A13)

a

~(1+1) O 2]:0 (i)mt  i
~~(i)=y v/o (1)–  -/00 (A14)

71 (i)=+v~ (i) (A15)

61 (i)=(/–l  )Eflo  (i) cot i (A16)

B(a, i) = -~ j~(a)~~(i) (A17)

G(a, i) = -~ j~(a)y~(i) (A18)

D(u, i) = -~ j~(a)~f(i) (A19)

where all of the summations arc over the range 2=2 to -!?=co.  Equation A12 can bc written more compactly

{ [ 1 ( J]~ =-~j~(a) P/(i)+  ~y~(i)--e~~(i)  .0. ~-~

= -~j~(a)~~(i) -~.o@-;)z ( ;)jl(a)yl(i) + ecos O – – ~ jl(a)d~(i)

= ll(a, i) +
G(a, i)

{)
— c o  W–E -

( )
ef)(a, i) cos 0-- ~

e 2 2

Similarly, substituting equation A 10 into equation A2 gives

~ = -~~($~ sin(o - n/2)’4 ~4~~!~,1)!  7~(0)T~(cosi)e4(t  - 1)
1=2 e

(A21)

. -~n.l,(~~sin(o-  */2) -F’~_~(0)P~(cosi)  sini
1=2

Using equation 12 and defining the auxiliary functions (amlogous to equations Al 3 through A14)
/–1al(i) = — Pf_l (0) P~(cos i) sin i (A22)
Z’+1

A(a, i) = -~ jl(a)a~(i) (A23)

equation A21 becomes

$= -~jl(a)al(i)sin(ti)-~)=  A(a,i)sin(w-~~ (A24)

To sw that DC<< B2 away from the critical inclination, note that

P2n(o) = (-l)”
1.3.5  . ..(21)l) (A25)

n!z”

%n+l(o)  = o (A26)

Hcncc from equations A5 and A6,
(A27)Vfo(i) = pl (0)P/  (cos i) # O only for I even

sin i
Ejoo(i)  =  -  z— F“(cos i)f~ (0) # O only for / even (A28)

hcncc by equation A14, /34 # O only for/ even, and the sum in equation Al 7 is over/ even
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~’”’’=-ez,~’(:q~~’’”[w  1  ‘d’’’!:’’-’)+””Pf(cos  i) + cm if~(cos i) = ---— –--—--—

Using lhc identity (I -X2)P; (X) = npn..l(x)-ti~(x),  P;(”) = flkl(”), h~nce by ~W:~Lion A5

2T~ (0)T~ (cos i) _ 2 sin iP~(0)P/(cos i) ~
V:(i)=

2 sin iPI_l (0)P/(cOs  i) ~” for ~ odd—-—
/(/+1) ‘- t(t + 1) 4+1

and hence

R, ‘f-l
( )

(
3n13R~  sini 5COS

2 i – 1
)

G(a, i )  =  –~oti  ~d!  ; — s i n  iPf_l (0)fj(cos i) = —  — — — - -  .  .  .+
/’+1 4a3

Comparing with equations A22 and A23 reveals that A = G and hence
de

- –C(U, i) cos ro
x–

The ratio G/B, to order J3, is

(A29)

(A30)

(A31)

(A32)

(A33)

where e3 is the J3 stead y state eccentricity. To get an expression for D, evaluate equation A6 at k= 1,

E/lo =L T; (f))[cotiT;(cosi)  - 7“(cosi)]
/(/+1)

– — M’1-l  (0){cos il’~-l (cos i) – (1! - 1) sin2 i}]-z  (cos i)}
‘(e;])

(A34)

Since 7;(o) = P;(o), then by A6, Eflo(i)  - P~(0) oc P/- 1(0) + O only when 1 is odd. ~Icncc from A19,

()t 4(/-1)
D(a, i) = –~t ~~t ~

{
—P~_l(0)cot i cosi P/_l(cosi)-  (1- l)sin’ iP/_2(c0si)

.?+1 }

3nJ3R~ COS
2 i ~aS2 ‘_5 +.

( )
. . .

8a3 
sin i

and thus
ll?/Dl =lJ2/J31 >>1 >>e3 =lG/Bl

dcmonswating  that DG/B2 is small,* except near the critical inclination.

Non-Gravitationai Forces
Lagrange’s planetary cquations33 give the effect of a velccity pc)lurbation,

Ae = (1/na)G Avr sin 8 + Ave(a  / er)(l  - e2 - r 2/a2)]

‘[ {

AOJ = -(1/nae)C2 Avrcos  O+ Av@(a/er  1+*

( )
a l--e2

Expanding to first order in eccentricity,

Ae == (1/na)[Av, sin O+- (2 - e cos O)AVO  cos O]

sine+  AVL r  cc~~isin(o+o)—.. -.—
a l – e ’

!

Aro = (- l/nae)[Avr  COS8  + Avo sin O(2- ecost?)  + Av~e cot i sin(ro  +0)]

(A35)

(A36)

(A36)

(A37)

(A38)

(A39)

“ The ratio has a singularity when COS
2 i =: 5/7 (i= 32.37’) or for perlactfy  polar orbits, ad hence the assetion may ta

false there as well as at the critical inclination. TOPEX/F’oseidon  has an ordination of 66.04” so this difficulty does not arise.

15



Then introduce a change of variables
*v= FAt AM.——AE=~. (l-ecos E)AE (A40)

mAMAE

The second half of equation A40 is obtained by differentiating Euler’s equation
M=n(l-7)=E-ecos  E (A41)

giving,

n = dMjdr  = (1 – e as E) d,!?fdt (A42)

Finally, the transformations
cos E—e

cos e = =(cos E-e)(l+-ecOs E)=cosE-esin2E
l–ecos E

sin,= GsinE

l–ecos E
= sin E(I +- e cos E)

(A43)

(A44)

and their corresponding first-order inverses

cos E=cos O+esin29 (A45)
sin E = sintl(l– ecos~) (A46)

arc used to convert to a single anomaly variable. The total change of X E {t?,  a} over an orbit is

&torb = J $$ dq (A47)
Ic[o,2m]

where tp is either angular variable (1? or Q, and dX/dq is obtained by expressing equations A36 or A37 in
terms of the chosen angular variable via the substitutions in equations A40 through A46 ‘ The interval of
integration 1 is the range of angles over which the forw is nonzcro. Drag is always nonzcro,  hcncc the
integral is taken over the entire range from O to 2x, whereas solar ladiation  pressure is only nonzcro  when
the satellite is not in the Earth’s shadow, and there is a smaller interval of intcgmtion.  Finally, the long
lcrm variation in the clcmcnt  is approximated by the change over a single orbit divided by period,

& ~Orb—.— (A48)
dt 2rt

Drag Perturbation on Eccentricity. The change in eccentricity due to drag over a single orbit for a
satellite of mass m and constant area A normal to tic direction of nlotion  is given by Meirovitch33

AaCD(l  - e2 )  2X  —

Ae=–
1+: e cos E Cos ~dE

H
P(E) ..—

m 0 l--ecosl?
(A49)

where p(l?) gives the density as a function of the eccentric anonlaly  and CD is the coefficient Of dreg.

Keeping terms only to first order in e,

de nAe
-— --~~p(E)[l-+ (e/2) cosE+ ..~cosEdE=--K(* + ep2)

~ Drag 27t o
(A50)

where the orbital period is P=2n/n, n is the mean motion, K = ?I&4CD/m,  pl = (1/zrr)J~~(E)  cos EdE, and

P2 = (1/25r)J:* P(~) COS2 ~d~ .

Drag Perturbation on Argument of Perigee, To obtain an equation for the argument of perigee, wc
start with Lagrange’s planetary equation for de/dt and follow Meirovitch’s method for obtaining equation
A49. Mcirovitch  (equation 12.32) obtains the following result by inserting the dmg force into Lagmngc’s
plcmctmy  equations:
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dro Apv2C~(l-e2)sinf3 Apv2CD(l  - e2 ) sin (3(1 - e cos 6)
—=-

me=z”-

.— (A51)
d m.nae

where O is the true anomaly, By applying basic formulae for elliptical motion, he also obtains an
expression for the square of the velocity (equation 12.34):

(n2u2 1 + e2 + 2ecosf3
~2 = ) = n2a2(l  + 2ecos8) (A52)

l-e2

Combining the last two results and expanding in terms of the small parameter e gives
dcu
—  = –~p(0)sin  O(l -tecosi’3)
dt

(A53)

Combining the last several results and keeping terms to first ordc.r in e gives

dco da dE
- 1

‘p ‘ 9 l+ecos8)(l-—= —=-—–sin  (
dl? dt dt ne

e cos E)

= -( K/fae)sin E(l+ ecosE)(l +ecos E)(l-ecos E)

= -( K/ne)sin  E(I+  ecosl?)+...

Then

(A54)

(A55)

where p5 = ~ + p4, w = (1/2Tc)~~~(E) sin EdE and pd = (1/2z)~~~(E)sin  E cm EdE.

Along-Track Thrust Perturbation on Eccentricity. Assuming a continuos  along-track thrust,
Av COS O

Aeorb  . —= ~7>(cos E-e)dE (A56)
naa mna

Letting T=mdv/dt and making a circular orbit approximation (v=na , Av/v = As/2a, T = (mv/2a)daldt  ),

2: ,t:: ~(cOsE-e)dF  =
~.~Aeo,b  =—-— .

0

(A57)

Along-Track Thrust Perturbation on Argument of Perigee. A continuous along-track thrust has no
affect upon the argument of pc.rigec.  Substituting equations A40 and A56 into A37,

( )F l-e2
A m = -

[

1 1
*2ae2 sin E 1— dE

l-e C05E+l-e2
(A58)

which is an odd function in eccentric anomaly. Hence the integral over ar! orbit is zero.

Solar Radiation Pressure Perturbation on Eccentricity. The satellilc  is treated as a perfectly
reflecting sphere, and hcncc the only momentum transfer is along the sun-satellite line. The geometry is
ilhrstmlcd in figure 11. The force can be expressed asw F = SACR/C, where A is the cross-sectional area
normal to the sun line, c is the speed of light, S is the mean solar radtive flux at the earth, CR is a
constant which partially accounts for differences horn sphencit y and ideal reflection,

s= 1358
— W/m2

1.0004 + 0.0334 COS d
(A59)

and d is the temporal phase angle measured in radians from July 4 (one year = 27t). J3xprcssing  the satellite
to sun unit vector in terms of the angles /3’ (the declination of the sun above the plane of the satellite’s
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orbit) and ~ (mcawrcd  in the plane of the orbit from perigee to the projection of the carthisun line onto the
satellite’s orbit), the radial, along track and transverse components of the radiative force are

F = (-F cos /3 cos(t3 - a), Fcos /3 sin(6-a), F sin /?) (A60)

Pcrigcc

-Orbit in Sunlight

Figure 11. Geometry of solar radiation pressure perturbation.

Substituting equations A60 and A40 through A46 the change in eccentricity over an orbit is

F COS /? a+AO
AeOrb = ~ j(l- ecos E)[2cos Osin(0 -a)- sin Ows(O- a)]dE (A61)

n  -  a-AO
Differentiating cqua~ion  A42 and applying equation A45, the variable of integration can be changed to O,

dE(l -e cos E) = ffe(l -2ecos O) (A62)

Integrating equation A61 and only keeping terms to lowest order in e,
d e  deorb
– .  — .  ‘c~~~fl{-2AO+cosa sin AO[l+4cosacosA6]}  = ll(a,~’)
dt 2Z

(A63)

where the entire right hand side has bczn  lumped into the function ll(@j  to highlight the cx licit3?
indcpcndcncc of de/dt  from either e or O. The shadow entrance and exit angles arc given by Escobal as a
quartic in COSO. For a circular orbit the solution reduces to a quadratic, and

AO = Z- COS-l
{k@J’’)21’’@j@j

(A64)

Solar Radiation Pressure Perturbation on Argument of Perigee. Substituting equations A60 and
A60 into A39 and keeping only terms to the lowest order in e, the orbital change in w is

Expanding the trigonometric functions in equation A65,

–F

{

a+AO a+Atl
ACUo,b =  —2 –cos~tcosa  Jcos2 MO - c m s ~ ’ s i n s  Jcos Qsin W&io

maen a–AO a-AO

a+AO a+AO
+ 2 cos p’ cos a J s i n2 ff10 - 2cosp’sins J sin e Cosede

a-AO a–AO 1

(A65)

(A66)

* Ignoring variations due to the satellite orbit itself, which =a2/# when R is the earth to sun ck.tance.
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T’hc integrals in equation A66 can be evaluated by observing that
a+AO

J C O S2 t)dO = A9+:COShin2A()

a–AO
a+AQ

J cos Qsin OdO = ~sin  2asin2A0

a-AO
a+AO

J sinz  ode = AO-~cas2asin2A9

a–AQ

The long term perturbation one is then
drn flA(WoTb _ -F ces ~’ cos a

[ 1
W(a, p’)—  _  ——. —

z“ 2 ? r 2nnmae
A9+2AO)  = — —

e

where tic geometric variables have been grouped into the function W(r@j.
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